VI. Sampling

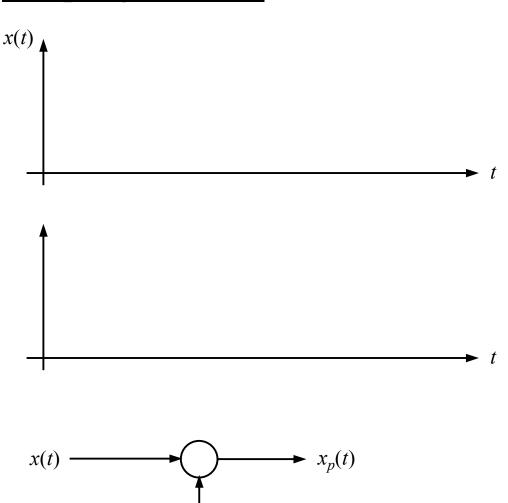
Sampling theorem
Sampling with a zero-order hold

VI. Sampling

Goal: • to process data numerically

• under certain conditions, a continuous signal can be represented by its samples

1) Sampling Theorem

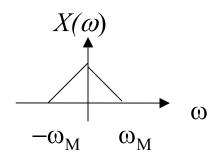


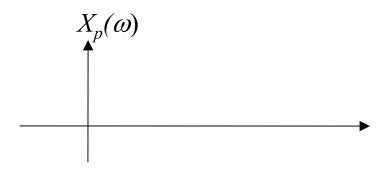
Spectrum of sampled signal

Use modulation property:

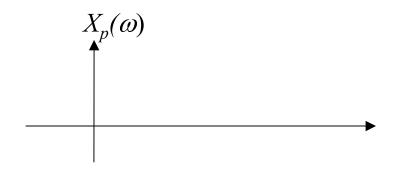
$$X_p(\omega) = \frac{1}{2\pi}X(\omega) * P(\omega) =$$

=

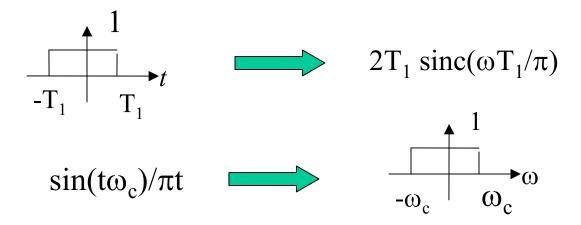




• How to get the original signal back?



Recall:



Sampling theorem:

When x(t) is bandlimited with $X(\omega) = 0 |\omega| > \omega_M$ then, x(t) is uniquely determined by its samples

$$x(nT)$$
 if: $\omega_s > 2\omega_M$, $\omega_s = \frac{2\pi}{T}$

 $2\omega_{M}$: called the Nyquist rate

2) Sampling with a Zero-Order Hold

• Why a zero-order hold?

Consequences in the frequency domain

